Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations.

نویسندگان

  • Snow Tseng
  • Young Kim
  • Allen Taflove
  • Duncan Maitland
  • Vadim Backman
  • Joseph Walsh
چکیده

We report what we believe to be the first simulation of enhanced backscattering (EBS) of light by numerically solving Maxwell's equations without heuristic approximations. Our simulation employs the pseudospectral time-domain (PSTD) technique, which we have previously shown enables essentially exact numerical solutions of Maxwell's equations for light scattering by millimeter-volume random media consisting of micrometer-scale inhomogeneities. We show calculations of EBS peaks of random media in the presence of speckle; in addition, we demonstrate speckle reduction using a frequency-averaging technique. More generally, this new technique is sufficiently robust to permit the study of EBS phenomena for random media of arbitrary geometry not amenable to simulation by other approaches, especially with regard to extension to full-vector electrodynamics in three dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

Performance Evaluation of a Curved Type Vane Separator at Different Plate Spacings in the Range of 25 to 35mm Using Numerical Simulation

In this paper, the turbulent air droplet flow inside a single passage of a curved type vane separator has been studied numerically. The simulation is based on the Eulerian - Lagrangian method. For turbulent air flow calculations, a computer code was developed to solve the Reynolds Averaged Navier Stokes (RANS) equations together with the equations of Reynolds Stress Transport Model (RSTM) o...

متن کامل

Self-accelerating self-trapped nonlinear beams of Maxwell's equations.

We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajec...

متن کامل

A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations

Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 13 10  شماره 

صفحات  -

تاریخ انتشار 2005